Mathematical Determination of Breath
Alcohol Concentration
In the BAC Verifier Datamaster

The BAC Verifier Datamaster employs an algorithm derived
from Beer’s Law to compute the breath alcohol concentration
(BrAC). Beer'’s Law relates the decrease in radiant energy
transmittance to the increase in concentration of the energy
absorbing analyte (ethanol). As the concentration of analyte
increases, the transmittance of energy through the sample cell
decreases in an exponential fashion. Beer’s law further assumes
monochromatic light, closely approximated by the filters in the
instrument. Beer’s Law is described with the following
differential equation:
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Equation 1 is viewed graphically as:
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The decrease in transmitted light (I) is a function of analyte
concentration (C) with the fractional decrease (dI) being
constant throughout the sample cell. The solution to Equation 1
is:

p=L = g-are Eg. 2

I,
where: T = transmittance

a = the molar absorptive constant for ethanol
at the particular wavelength used in the
BAC Datamaster

b = pathlength

c = concentration of analyte (ethanol)



The absorbance (A) of light energy can be derived from the
transmittance in Equation 2 according to:

A=—1nT=—1n-§-=abc Egq. 3
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The values of a and b in Equation 3 can be combined to form the
value k and restated as:

-1n L = ke Eqg. 4
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Since the BAC Datamaster is designed to measure the concentration
of ethanol in the sample chamber, we are interested in solving
Equation 4 for C according to:
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The instrument now determines the concentration of ethanol by
measuring a final processed DC voltage at test point 6 on the
detector board. As the concentration of alcohol increases and
the transmittance of radiant light to the detector decreases, the
voltage at TP6 increases. The voltage (V) will thus be
proportional to some circuit gain (Z) times the change (decrease)
in radiant light. Next, we must express I/I, of Equation 5 in
terms of the voltage (V). This is accomplished as follows:

vV =2(I, - I)

where: Z = circuit gain

The next several steps will determine an equation where I/I, is
expressed in terms of V:
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Equation 6 now expresses I/I, in terms of V allowing us to
substitute this expression back into Equation 5 and obtain:

1n [1 - —Y—} Eg. 7

As noted above the constant 1/k is empirically determined based
on the pathlength employed in the Datamaster and the molar
absorptive properties of ethanol at the wavelength employed
(3.44u). The value of 1/k has been set equal to 1.27665.
Expressing 1/k to five digits of precision is really unnecessary
since the instrument effectively recomputes it with each
measurement as discussed below. The value of ZI, is also a
constant in Equation 7 which must always be greater than the
maximum voltage V. The value of ZI, has been set equal to 5.



Equation 7 can now be simplified to:

c=x, =k[ln(1 - -2)] Eq. 8

where: X, is the expression for C in the software code

Incorporating the constants into Equation 8 we obtain:

X, = -1.27665[1n(1 - -;-’)] Eg. 9

Application of Taylor’s Approximating Polynomial

The Taylor’s series polynomial is an approximating function
used in computations where a direct analytical result may not be
possible. When computing the breath alcohol concentration (BrAcC)
the BAC Datamaster needs to perform a natural logarithmic (1n)
calculation which is unavailable in the instruction set for the
mlcroprocessor. As a result, an approximating function not
requiring the natural log functlon is employed. This is where
Taylor’s approximating polynomial is applied.

The function within the Datamaster that needs to be computed
to determine breath alcohol concentration is:

X, =k, [In(1 - I Eq. 10

where: X the computed BrAcC
a constant derived from the Beer-Lambert
law incorporating the path length
and molar absorptive constant for
ethanol
V = the DC voltage from the detector board
that is proportional to BrAcC
k, = a constant chosen to ensure that V/k,
is never greater than 1

[



The appropriate values for k; and k, have been determined for
the Datamaster instrument and when incorporated into Equation 10
yield:

X, = -1.27665[1n(1 - .;-’)] Eq. 11

The maximum output of the analog-to-digital converter is 1.999
VDC which represents the maximum value of V. Thus, k,=5 is
adequate to ensure V/k, < 1.

Taylor’s approximating polynomial has the following general
form: '

£(x) =Y, (x—a)]’:lf"(a) | Eq. 12
k=0

where: a = the value of x around which we are
approximating f(x)
f¥ = the k® derivative of the function £
evaluated at a

Expanding Equation 12 we obtain:

£(x) = £(a) + (x-a) £*(a) + _(3‘2‘_;”_’f=(a) bt -(L;'a—-):f”(a) Eq. 13

Taylor’s expansion can only be applied to functions that are
continuously differentiable at x=a, which is the case in 1ln(1-x).
In the Datamaster, Taylor’s approximation needs to be expanded
about a=0 since this will eliminate the 1ln function from the
approximation. This means that Taylor’s approximation will be
most accurate at or near zero. Inaccuracy increases as we depart
from zero. However, including enough terms in the polynomial
will ensure sufficient accuracy within the relevant range.

The Datamaster employs the first four terms of Taylor'’s
approximation seen in Equation 13. If we let a=0 and expand
Taylor’s polynomial about a=0 and include the first four terms we
obtain:



£(x) = £(0) + (x-0)£*(0) + _‘1‘"7°ﬁf=(o) + -95-"69-)—3:53(0) Eq. 14

The following are the derivatives of f(x) = 1ln(1-x) where
=v/5. These derivatives are evaluated at x=0:

f(x) =1ln(l - x)

£l (x) —(1 -x)* = f(0) =1

£?(x) -(1 -x)2% = £2(0) = -1

f3(x) = 2(1 -x)2% = f£3(0) = -2

One could also perform the expansion by choosing x=v/5 to be
negative. 1In this case we would be expanding ln(l+x) and arrive
at an alternating series. The results are the same either way.
Incorporating the derivatives above into Equation 14 we obtain:

2 3
f(x)=0—x—-3‘2—-—3§— Eq. 15

To obtain f(x) in terms of BrAC we need to incorporate the Kk,
constant as follows:

2 3
£(x) = -1.27665( - x — —’;— - 1‘5- Eg. 16

where: X =v/5

Since Taylor’s expansion is approximating another function
[ln(1-x)] about the point x=a (here a=0) the accuracy will
decrease as one departs further from a. Because the appllcatlon
of Taylor’s expansion involves a finite number of terms (three in
the Datamaster) there will be an error due to truncation. A



convenient way to approximate this error or find an upper bound
for it is available. Consider Taylor’s expansion expressed as:

£f(x) = P.(x) + R (x)

where: P,(x) = the polynomial expanded to k terms
R, (x) = the remainder term

The remainder term R,(x) is the error resulting from using only k
terms in the approximation. R, (%) is simply the k+1* term in the
expansion as follows:

£(x) = £(a) + (x-a) £1(a) + — + ((x%]?;‘;l-f"ﬂ(c) Eq. 17

where: ¢ = a value lying between a and x. Select
c to be equal to the greater of the two
in order to maximize the error estimate

f¥ = the k® derivative of £(x)

The last term in Equation 17 is the error term due to truncating
the series to k terms. This is expressed as:

|R,(x) | = l%f““w)l Eq. 18

Letting a=0, k=4, and c=0.08 (to maximize the error estimate) we
obtain:

|R,(0.08) | = -1.27665 |—+—— ((f))| £4(0.08)| < 0.0000184 Eg. 19

where: x = 0.08 results from V = 0.4 VCD on the
detector board corresponding to an
approximate BrAC of 0.106 g/210L

Equatlon 19 reveals the maximum error resulting from using four
terms in Taylor’s expan51on at a BrAC level of approximately
0.106 g/210L. This is equivalent to fourth decimal place
accuracy (0.5 x 10%) and is below the resolution of the analog-
to-digital converter employed in the Datamaster (+ 1.0 mV DC
corresponding approximately to 0.000255 g/210L). Employing the



three terms (to the third derivative) is clearly more than
adequate.

Similar to above we can evaluate the error associated with
employing only two terms (to the second derivative) in Taylor’s
expansion near the 0.100 g/210L level. Again, consider the
remainder function in Equation 18 above. We now determine its
magnitude employing only to the third term (remembering that the
first term is zero):

3
|R,(0.08) | = -1.27665 Liil-f3(o.oa)|< 0.000280 Eg. 20

(3)1

Equation 20 reveals an error of 0.000280 g/210L at 0.106 g/210L
when using only two terms. Clearly, this would be adequate even
for forensic purposes at the critical per se level of 0.100
g/210L.

Another important point to be made is that Taylor’s
expansion as employed in the Datamaster is always less than the
direct analytical result. As concentration increases and the
error in Taylor’s expansion increases, the approximated value is
even lower than the direct analytical result. A comparison of
the direct analytical result and Taylor'’s approximation at four
different concentrations are shown below:

Analytical Taylor’s

Concentration Result Approximation Difference
0.01 0.0128 0.0128  3.2x107
0.10 0.106449 0.106435 0.000014
0.20 0.20748 0.207296 0.000184
0.30 0.300935 0.300188 0.000747



The figure below illustrates the BrAC computed by both the direct
analytical approach and Taylor’s approximation and plotted
against the final processed DC voltage at the detector board.
Their differences are not apparent until higher alcohol
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Taylor’s approximating polynomial is clearly being appropriately
applied in the BAC Datamaster.

Final Computations

We next consider how the BAC Datamaster determines the final
breath alcohol concentration result. As discussed above, the
instrument incorporates the DC voltage on the detector board
(TP6) into the following equation:

9



X, = -1.27665 [1n(1—%’)] = -1.27665 —-SY - - Eg. 21

where: X, = ethanol concentration at the 3.44um
filter

= the ethanol concentration at the 3.37um
filter which is substituted for X, when
that filter is in place

X

ac

The instrument next removes the absorbance at each filter by
subtracting the absorbance due to water:

water absorbance at 3.44um
water absorbance at 3.37um

where: b,
b2

Next, the instrument corrects for a calibration value (CAL) and
the internal standard (quartz plate) value according to:

X, =CAL X, X, Eq. 22
where:
CAL = e X, = Zoca1
3%c31 A&wst
where: C,. = the value of the calibration solution as

* determined by the state toxicology

reference lab
X,.s = the value measured by the instrument at
the time of calibration

10



Xqa = the value of the quartz plate at the time
of calibration

Xge = the value of the quartz plate at the time
of the field analysis

Equation 22 illustrates the diminished value of the constant
(1.27665) in Equation 9. The value of CAL and the changing value
of X, continually adjust the constant for a specific analysis
that is consistent with the optics, electronics, etc. at the time
of analysis. Moreover, the validity of these constants are
determined by analysis of the external simulator standard at the
time of each subject test.

Finally, the instrument determines the presence of an interfering
substance (acetone) according to the following:

where: C, = a computed ethanol value
A,B = constants determined during calibration

based on absorbance of ethanol and acetone

Next, the value of X,” - C, is determined. If this exceeds the
threshold set in the 1nstrument (0.01) then C, becomes the
reported ethanol result and the difference becomes the reported
"Tnterferant" result. If the difference does not exceed the
threshold, then X,” becomes the reported ethanol result or breath
alcohol concentration.
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